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A new three-point combined compact difference (CCD) scheme is developed for
numerical models. The major features of the CCD scheme are: three point, implicit,
sixth-order sceuracy, and mclusion of boundary values, Due to its combination of
the first and second dervatives. the CCD scheme hecomes mare compact and more
accuorate than normal compact difference schemes. The efficient twin-tridiagonal ( for
calculating derivatives) and triple-tridiagonal (for solving parual difference equation
with the CCD scheme) methods are also presented. Besides, the CCD scheme has
sixth-order accurdey at periodic boundaries and fifth-order accuracy at nonperiodic
boundaries. The possibility of extending to a three-point ¢ighthi-order scheme is dlso
meluded. o 9ok Acktenic Pres

1. INTRODUCTION

The grid spacings ( Ax, Ay)in most ocean numerical models are not small. For example,
4 global ocean model is considered having high resolution when a horizontal grid is (1/8)°.
approximately 14.5 km. For such large grid spacing. use of highly accurate difference
scheme becomes urgent. For example, MceCalpin [1] used fourth-order differencing 1o re-
duce pressure gradient error in o -coordinate ocean models.

The trend toward highly accurate numerical schemes of partial differential equations
(PDE) has recently led 1o a renewed interest in compact difference schemes. Concurrently,
Adam [2]. Hirsh [3]. and Kreiss [4] have proposed Hermitian compact techniques using
less nodes (three nstead of five) at cach grid pomt o solve PDE. Later on, as pointed
out by Adam [5], the truncation errors are usually four to'six times smaller than the same
order noncompact schemes. Since then, much work has been done in developing compact
schemes for various applications. such as: an implicit compact fourth-order algorithm [6];
a fpurth-order compact difference scheme for nonuniform erids (7]: fourth-order and sixth-
order compuact difference schemes for the staggered grid [8]: an early form of the sixth-order

370
0021.94951 98 525,00

Copymght i£ 1998 by Academic Press
All nghits of reproduction m any fomm resened



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1998 2. REPORT TYPE 00-00-1998 to 00-00-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Three-Point Combined Compact Difference Scheme £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Oceanogr aphy,Naval Postgraduate REPORT NUMBER
School,M onterey,CA,93943

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 30
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



3-POINT CCD SCHEME 371

combined compact difference scheme |9): compuct finite difference schemes with a range
of spatial scales [10}; and an upwind fifth=order compact scheme [11]. These schemes
are characterized by (1) 3-point sixth-order, (b) much lower accuracy at nodes adjacent 1o
boundaries. and (c) no requirement on PDE to he satisfied at boundaries.

Several recent work emiphasizes on the improvement of boundary accuracy. For hyper-
bolic system. Carpenter er af. [12, 3] introduced a simultaneous approximation term (SAT)
method that solves u linear combination of the boundary conditions and the hyperbolic equa-
tions near the boundary. This methed provides fourth-order accuracy at both interior and
boundary. Under the assumption that the derivative operator admits a summation-by -pars
formula then the SAT method is stable in the classical sense and is also time=stable. For
2D vorticity-stieam function formulation, E-and Liu [14. 15] propoesed a finite difference
scheme with fourth-order accuracy @t both interior and boundary. Question arises: can
we construct a scheme (1) working for any differential equation and (2) with high-order
accuracy at both interior and boundary”?

A new three-point sixth-order combined compact (CCD) scheme is such a scheme with
the following features: (a) 3-point sixth-order, (b) comparable accuracy at nodes adjacent
1o boundaries. and () requirement on PDE to be satisfied at boundaries. Fourier analysis of
errors is used to prove the CCD scheme as having better resolution characteristics than any
current (uncompact and compact) scheme. Twe implicit solvers for the CCD scheme are also
proposed for calculating various differences (twin-tridiagonal soiver) and for solving PDEs
riple-tridiagonal solver), Furthermore, we use the one-dimensional convection-diffusion
equation and two-dimensional Stommel ocean model to illustrate the application of the
CCD solvers and to demonstrate the henefit of using CCD scheme.

2. CCD SCHEME

2.1. General CCD Algorithm

Let the dependent variable f(x) be defined on the interval, ) = ¥ < L. Use a uniform
grid.O0=x; <43 < x3 < - < ¥y < Ay=) =L withaspacing i=x.| — L/N. Let
the dependent variable f(x)atany grid point x; and two neighboring pmm.\ X4 :md Xjuy be
oivénby fi, fioj.and fio; andletits duri\e'aii\-'i:'\a.at the twe neighboring points ¥, and v, 2
be givenby f . [ ... 2 and £ fy o £ The essence of the CCD scheme
is 1o relate f, £, _IJ" ..... 1™ 10 the two neighboring points: £, . £ . ..., [

and fiors floye figeeens 20

() (). () ) -oe((39),.-(39) )~
() ((50).- (). ) 5(().,-(2).)

=—(f—1 = fi=1)
as
=}1—_ﬁ_[fr—_|*—3fi+f;-|!'
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and to compute £, f"..... £ by means of the values and derivatives at the two neigh-
boring points. Moving from the one boundary 1o the other, CCD forms a global algorithm to
compuie various derivatives at all grid points. inthis paper we only discuss the sixth-order
CCD scheme,

2.2, Local Hermitian Polynomial
Let H,(x) be alocal Hermitian polynomidl defined on the leed interval [x;_1. x4,
representing the variable [ at x; and f and its derivatives f'. /" at the two neighboring

points .x_, and x;. g,

Hix—)=fio. Hix)=f, Hix)=fw.

2.2)
Higon=f" . Hxay=f, H'x-0=f" H'(ua)=f,.
Expand H,(v) into Tavlor series in the neighborhood of 1, with sixth-order accuracy
e CHI) o H ) 5 HPw
Hilx) = H,(x)+ H (x)x + '2! X4 T + TR
{5}, 16h . _
. H, (_.t.}“lsJ‘-H, “‘]_'("_ (23)
5 H!
The seven coefficients in (2.3) are determined by the seven equations in (2.2),
15 7 I
H(xg) = —Afisy =Sic) =zl + v+ U= o)
:‘:i 161&1’# i -'f 1) lf?(f“] Jf. 1 16 -fr-.-[ J’u—l
. 3 9 . | .
H'(x) = }F(f;__, =2fi+ ficqg)— ﬁ[f,_,., = fi_i) +_§(._,r‘_ D
£ 15 L R P o
H, (x;) = _Uw(l.r—l ﬁ—l}‘?“ﬁ[.f:_q"‘f:_i—“—T[.f;..:_f;-” By
L P 36 -~ i 21 ] -‘ i -
H ")y = “F‘fﬂt_'ﬂfr‘*‘fr—l“’k—_;[ﬁ‘ foo— Pe (frer+ 1))
.Iq: -I-J 5 e ar . oo
HJ ?(".‘-J = j!“(fr 1= ‘ )= ‘;I'.:(}-JT'I.*‘»II—I]-.-‘};\(IK"I -’{—!)
- 0 225 g
H V) = ——(frar —2f; + fiy —f J+—{j+, Fi e
o
The kth derivative at the grid point x, is approximately given by
SO0 > HM (). (2.5)
Substitution of (2.3) into (2.4) leads 10
7 Fro e f I e o 151 [f fnd 349 7146
= iy = oW — = — e et ) 1
16 fra T Tl T g — im) = g Uia = i = sagren
o oo e o l Y -y - I (86
g i —F0) = —(ff.l+.f,-. DAL =3 =2 = g0

(2:6)
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which are the schemes for computing the first-order and second-order derivatives at the grid
point ;. respectively. Thus. the CCD scheme with sixth-order accuracy can be written by

6 (), (), (), (59, - ().

—!5(‘ fici) (2.7
= Tep it = Ji -

which s for the first derivative calculation, and

().~ (),) -+ - (5),) (G5

3
=h—:t_.f._1 =2fi+ fii) (2.8)

which is for the second derivative caleulation. Comparing (2.7) with (2.1). we find that the
paramelers in (2.1} for the sixth-order scheme should be

7 ! 15 1.9 x
=—, = —— ay =—, Uy ==, N = —, n=_
o 16 £ 6 1 oy 2 2 il 1 ¢

Forthe sixth-order CCD scheme. the truncation errors in (2.6)

1349 54 -
e = LT3 107 e,

8] g0 It TR
SoatorT Pt~ 4.9« 1077 A
7781760 O « W78

20160
are quite small.

Another benefit of using CCD scheme 1s the existence of a global Hermitian polynomial
with continuous first- and second-order dervatives at cach grid point. We will describe it
in Appendix 1.

2.3. Error Estimation

We compare the truncation errors between the CCD scheme with current generalized
schemes [ 10] for first-order derivatives.

flralfl+ L 0+B L+ fl=a f’*‘;j_-’r‘“ +h ]; L "‘;"3(’_’1";"'*
(2.9)
and the second-order derivatives.
el + o0 +BU A1)
___af;‘: =2+ fier ___bfe pa=2fi + fioa @ fiss=2fi+ f}—s' 2.10)

2 ‘ 442 942

where the parameters . f, «, b, ¢ take different values for various schenes (Table 1). The
comparison of truncation errors s listed in the last column in Table 1. We find that the
CCD scheme has the smallest truncation error among various sixth-order schemes, For
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TABLE |
Truncation Errors in Various Dilference Schemes for the First
and Second Derivative Calculations

Pardmeter
DPerivative
approxtmation Eq. Scheme a b c Truncation error
) f_l; . -
First (2.82)  2nd-order central {) (4] | 0 0 o/ h
28 S scheme ' ) ) ( 0 PR
(2:82) tandard Pade scheme i f 3 ) 5—'} ft
212 Ath-ord 0 I 2 = I 36 % ! g
12.12)  &th-order central | { 3 = 0 0 x 3.‘—'? [
. ) 1 14 1 i 1
(212 Gth-order tidiagonal - ] - — 0 dow — "
3 9 9 71
17 =1 a0 w1 -
2 eheorderpentaiagonsl = — = 0 0 —— x — ;T4
) rorder pentadiagons| = 7 7 19 ,”.i’ 1
. . ~ 1340 -
210 tth-order CCD / / { f t o ® j—l_r fi
- |
Second (2831 2nd-order central 0 0 i 0 0 2 —f"h
o= . - ) fi B 1 .
(2%)  Stundard Padé scheme T ] 3 0 0 5 X3/
5 3 3!
(2433 Gth-order central 0 0 s = 725 L g
il 3] 13 ~Cn - — e e X — ]
e EE T T
o . 2 123 —184 1.
(2H  Gth-order midiagonal = 0 = = 0 —_— =Y
I 11 I'l Il 8!
12 —1 120 —2672 1
a . . dix " ae . et = e
(2. Oth-order pemadingonal T o o7 0 0 o7 % 5 P
Lo itine
(281 Gth-opder CCD / J / ! ! =2x g gy

example, the truncation error of the first derivative using the CCD scheme is abour 41.2
times smaller than using the sixth-order central scheme. 4.6 times smaller than using the
sixth-order tridiagonal (compact) schemes. and 6.0 times smaller than vsing the sixih-order
pentadiagonal (compact) scheme. The truncation error-of the second derivative using the
CCD scheme is about 36 times smaller than using the sixth-order central scheme, 8.4 times
smaller than using the sixth-order tridiagonal scheme (compact), and 13.8 times smaller
than using the sixth-order pentadiagonal scheme (compact). Comparing the CCD scheme
with the sevond-order central difference (SCD) scheme (most commonly used in ocean
moedels). truncation errors for both firstand second derivatives are more than four orders of
magnitude smaller.

Another good (eature of the CCD scheme is that the CCD scheme uses the same formu-
lationat all grid points except at the boundaries. where some additional boundary treatment
15 formulated. These additional schemes at the boundaries are fifth-order accurate for the
PDE with the CCD scheme (see Section 5). A CCD scheme with gighth-order accuracy will
be presented in Appendix 2.

3. FOURIER ANALYSIS OF ERRORS

Fourier analysis of errors is commonly used 10 evaluate various difference schemes,
described extensively in Swartz and Wendroft [16]. Oliger and Kreiss [17]. Vichnevetsky
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and Bowles [18], Roberts and Weiss [19], Fromm [20], Orszag |21, 22|, and Lele [10].
As pointed out by Lele [10]. Fourier analysis provides an effective way to quantify the
resolution characteristics of differencing approximations.

For the purpose of Fourier analysis the dependent variable f(x) is assumed to be pertodic
over the domain [0, L] of the independent variable, i2.. fi= fuv.; and h=L/N. The
dependent vartable may decomposed into Fourier series,

k=N.2
fley= Z ﬁ{,\l—.:i,:__f_l- (3.1)
=_Np2

where i =+/=1. It is convenient to introduce a scaled wavenumber w=27kh/L =
27k /N cand a sealed coordinate s = x /7. The Fourier modes in terms of these are simply
explrws). The exact first-order and second-order derivatives of (3.1) generate a function
with exact Fourier coefficients

-t ]w - il L'." 2 =
=y =— = f; -
i h I I ( 7 ) I
However, the Fourier coefficients of the derivatives obtained from the differencing scheme
might pot be the same as the exact Fourier coefficients. i.2..

. i’ . - w7,
lj_;i]“;:Tf{. (f( 1;;:=—(T) f;.

where 1" =w'(w) and w" = w" () are the modified wavenumber (both real numbers) for
the first-order and second-order differencing. The smaller the difference between the exact
and modified wavenumbers, the beuer the difference scheme.

According to Lele | 10}, the modified wavenumbers of the current generalized difference
schemes (2.9) and (2.10) are

v b “
asinw — = sin 2w -~ 5 sin 3w

»
wilw)= [3 g
| +2xcosw + 28 cos 2w
and
. [2a(1 - cos u) + 2(1 = cos 2uw) + (1 = cos 3w) <
u(w)= = 3 (3.3)
142 cos w—+28cos 2w
respectively.

For the CCD schemes (2.7) and (2.8), the maodified wavenumbers »" and " can be
calculated jointly as follows:

‘.f{"J = Z _ﬁ.t’“" (xithdd {3'4)
IS
j‘?(.‘ ) = Z j';)f,u TRE A (35}

flly = 3 e (3.6)
Ly
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and

[F g = Y] pue ™™ (3.7

i
) g = Z( ) g (38)
Flatiy =Y felmehigh (3.9)

i
fa=h) = 37 falwirmrgm (3.10)

.
[fix+mly, = Z{.}:blfgﬂ-"“"“l' AN gt (3.11)
(£ =My = Zu’ ) pue T e (3.12)
sy = T{ﬂ gUsLaLhn gt (3.13)
[F =)y = Zu ) g N gt (3.14)

Substitution of (3.4)+3.14) into (2.7)-(2.8), we have

7( + 1! ! i "y L (3.15)
—[cosw Y —sinuw(w’)y = — sinw 3.
3 -i-aamuw 8-5 1

q . ) I , . ] P
—1{-sm wiw' — [ — Ecns wlfu')y = 6lcosw — 1L (3.16}

Solving (3,13)+3.16). we have

. 9 sin w|d -+ cosw
wiw) = 4+ cosw) (347
24 + 20¢cos w + cos 2u

/81 =48 cosur — 33 cos 2w
YV 4B ¥ a0cos w2cos2w

) = (3.18)
Among various difference schemes. the modified wavenumbers of the first-order differ-
encing w’ (Fig, [2) and of the second-order differencing " (Fig. 1b) of the CCD scheme
are closest to the exact wavenumber .
In multidimensional problems the phase error of first-order differencing scheme appear
in the form of anisotropy (10, 18].
(cos fw'(w cosf) + (sinf ) (w sin#)

'[(':,-},-,,.3(_:;.'.1‘9) = w'(w. 8)jw= ; (3.19
"

Figure l¢ shows polar plots of phase speed anisotropy of various schemes for first derivative
approximations. The phase speed for wavenumber (magnitude) w/x = ,%“ % virin & ”‘q", 2—3

are plotted. Here, we also see that the CCD scheme shows improvement.
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(a) (b)
First derivative dpproximation Second denvative approximation

Cad
.y
L3

i
L4
oma

2l g

na

Modilied Wavenum
n

Modiflat Wavenuniber
in

! 1
0.5 a5 ‘|
0 — - 0 :
0 0.5 1 15 @ 2.5 3 6 6.5 1 1.5 2 25 3
Wavanumber Wavenumber

Palar piot of phase speed anisotropy for the first denvative aporoximation:
wavenumber(magnitde). 1450, §/50......., A5/BD, 50/50

FIG. L. Fourer analvsis ol error for detivatve approximation; (41 second-order centrul schetme: (b)) standurd
Podé scheme: (¢} sixth-order central scheme: (d) sixth-order iridiagonal scheme: (¢) sixth-order pentadiagonal
sehame: (1) combined compacr scheme: (g) exact differonniation,

4. CCD FOR DERIVATIVE CALCULATIONS

The previous section shows that the sixth-order 3-point CCD scheme is more accurate
than any other sixth-order scheme including ordinary compact schemes. Nevertheless, since
the CCD scheme is implicit and combines computation between the first-order and second-
arder differences, we should compute £ and § jointly and globally.

An efficient and implicit CCD solver is designed to calculate the first-order and second-
order differences. Since CCD is a 3-point scheme. the difference calculation at v, needs to
use f. f'.and f" at the two neighboring points x; - and x,..,. At the two boundaries v, and
Ay - some specific treatment should be included in the CCD scheme.

4.1. Non-Periodic Boundaries

At both boundaries, v= v, and v =xy_.,. we propose a fourth-order one-sided CCD
scheme instead of the two-sided scheme to keep 3-point structure,

/8f 8 s
(:5:)1 Y (_3;):+ﬁm (5."

-

[}

: 1 )
) = }—,I.(u_fl + by f5=e¢ f3) (4.1)
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8 f B 5f 1 .
/i ' - 3y | — = —\@if)y b fsFeafs 4.2
l(E.I'J)I+ah£(§-\':)3+“(5.(): h{ﬁ'..jl afateafz) ( }
Sf) (ﬁ)") _(53;’) I ) . . :
LY e L) —py = lafvn £y Fafvo) (43
(5.1: Mel “ &x /oy Al 8t ) k{mn I 1w befa) (43)
52 5 f af |
I ( f) + e ( ; {) — B (—f) = —(a@xfnver Fbafy +eafn ) (4.4)
&7 ) 8x=/ o dx /o h
where

=2, fi=-—-L a=-=-T7/2 b =4 ¢ =-—1/2

2=35 f==06 =9 bh=-12 =3

At the boundaries, the first-order difference, represented by (4.1) and (4.3), has a truncation
error of —;j Wigt, The second-order difference, represented by (4.2) and (4.4). has a
truncation error of — 2 f9'h* . The accuracy at both boundaries can be further improved 10
fifth or sixth order, )

The elobal CCD- system, eonsisting of (4.1) and (4.2) for i =1, (2.7 and (2.8) for
1=2.3.4,,...1 cand (4.3 and (44) fori =N+ 1. is a wc]l‘posed s\stc.m smc:.. it has
2N +T) equ.suum with 2(N + 1) unknowns: (87/8x),. (82 f/éx?),. i=1.2,3....,1 N
N + 1 We may write the 2(N + 1) equations (4.1 (4.4} (2.7). and (2.8) into a more
general form (global CCD system).

Bf ; 5fF af) (’33}')
= ‘= +d'3 + b1
aj (1) (5“.)‘_1 +aj( (6.\'); a’ (3 )(:}t_ . /(1) )

82 f 82 f
+H(2) —{ + b (3) ( - J: I =y f=12 (4.5
' DRSS SR Sl

aj (1) = BlD\= @l (3) = Phui @) =8, j=1,2, (4.6)

with

representing the four boundary equations (4.13-{4.4). Here. j = | corresponds to the first-
order derivative computation (2.7), and ;=2 corresponds to the second-order derivative
computation (2:8). The two variables s and §7 are source terms.

The 2(N - 1) % 2(N + 1) coefficient matrix of (4.5) has a twin-tridiagonal structure
and can be directly solved by two steps: twin-forward elimination and twin-backward
substitution (see Appendix 3).

4.2. Periodic Boundaries
For periodic boundaries, we have
fo=fu: fi=ifwp S=Fve fi=fiw f=8F K= @D

Thus. the global CCD system. consisting of (2.7) and (2.8) for/ = 1. 2. 3., ... N is well-
posed since it has 2N equations with 2N unknowns: (8f/8x),. (8% f/8x%),i=1.2
3v. ... N, Thecoefficient matfix and related algorithm are listed in Appendis 4.
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5. CCD FOR SOLVING FINITE DIFFERENCE EQUATIONS (FDE)

Any PDE discretized by the CCD scheme (called here the CCD FDE) can only be solved
globally since the CCD scheme is implicit. Unlike any other schemes. the CCD FDE solver
requires the satisfaction of the FDE not osily on the interior points, but also on the boundary
nodes. Benefits of such a treatment are to decrease the truncation errors near the boundaries
as well as to increase the global accuracy. Here, we propose a triple-tridiagonal solver for
solving CCD FDE.

3.1. Nonperiodic Boundaries

Consider a one-dimensional differential equation.

df d*f o .
a (¥ )— +aidx)=—= +tanlx) i1 =s(x), O<x =L, (5.1)
dx dx=
with general boundary conditions
di () )+ dy(x)f () =clx) oty =00 =1, {5.2)

which is the Dirichlet boundary condition when oy = 1. d) ={ and the Neumann boundary
condition when dy =0,d, =1.
The corresponding FDE can be written a3

[(af 5 f :
ap:_:"l(g'—r) +~a;u‘l(s—f;) Lag(i)fi =5, i=1.2 .0 A1 {5.3)
¥/, 7/,

ax=

and the boundary conditions become

 fAf " (8f — .
d, (;)I + dy fr= o, d} (E)¥_| +dyfney =¢- (5.4)

Notice that we applied the FDE (5.3) not only 1o the interior points but also 1o the two
boundary points () and xy.p). At each interior grid node § (2 <7 < N) we have three
equations [(3.3).(2.7), and (2:8}] with three unknown varinbles f,. (8f/8x),. (8% f/82%),.
However. we have only two equations [(5.3) and (5.4)] at both boundaries but three
unknowns: [, (3f/8x), (8% f/8x%), for the left boundary. and fyo. (8f/8x) <.
(6= f/8x )y for the right boundary. To close the system we need an extra condition
for both the left and right boundaries.

The additional boundary conditions are obtained by constructing a new fifth-order poly-
nomial,

Plx)=Po+ Pix+ Rj,l': + Pyt 4 Pax® + Pex®. (

h
N

For the left boundary. the six coefficients-of P (x) can be obtained by

Pix))=fi. Pla)=f. Plual=fs P:'(,t‘l}=‘f—|’. P'l,\‘ﬂ:f};. P"L\';l=f;'.
(5.6)
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The additional left boundary condition with fifth-order accuracy is then (Appendix 5)

/5f 8t (5 r) '8 f 1 o )
! o : =4H +—31fi=Rfr+ f0=0 (5.7
(5,1-): o (,n) 2| 5 )| =4l 57 )+ pEU=T2 =00 G

and the additional right boundary condition with fifth-order accuracy is written as

5 h f, ls
14(f) +m(—f) H’u-(s—-f) |~-ua( f)
Ay N1 AX N bA%e AT dy A\

|
- Hff‘[f.\--n —32fy+ fyo)=0. {5:

T
o
-~

Thus, we establish three cqmlionx forall grid pﬁimc (interior and boundary ) with three
unknowns £, (§f/8x);. (82 ffa'\ hoi=1,20....1 V + 1. We may wite the 3(N + 1) equa-
tons (2.7 (28). (5.3). (54). (5.7). (5.8) into 2 more general form (global CED FDE
systemy),

N 5 8f a2 o (%1
en [ = fey( = '3 = b1 bj (2 ( 3
ai (¢$,x‘)l_]+u'( r(&.t),‘iw”““ ('5.1'),._514-? }(3.x3 ,_1+ 1@ 3x=/,

j 82 ' j . .
+h; (3) (5 '{) + ol (N fioy el (20 f; + ¢/ BN fioy =51 (3.9)
S A
where/=1.2,3 ...,/ N +Tand j =1, 2.3 Thesuperseript J indicates different equations

used arcach grid point: 7 =1 cor eap.nnd» 1o FDE (3.3). /=2 corresponds to the first-order
dervative calculation (2.7). and j = 3 corresponds to the second-orderderivative calculation
(2.8). For all the interior and boundary points, the coefficients of (5.9) satisfy

a (=a'G)=bl1)=b'G)=¢/(H=c(3)=0. (5.10)
For the two boundaries, the coefticients of (3.9) satisfy
alihy=b{h=¢l(n=0.
ay, (3 =by, (3r=cl, (3r=0. j=1.2.3 (5.11)
Thus. the coefficient matrix of (5.9) indicates a triple-tridiagonal siructure and can

be solved in two steps: triple-forward elimination and triple-backward substitution
(Appendix 6).

~= .2. Periodic Boundaries

For periodic boundaries (4 ‘)) the globul CCD system (5.9) 1s well-posed since it has 3N
equations with 3V unknowns: j,. (8 /8%, A8 F/8x5) . i=1,2.3.....1 . N. The coefficient
matrix and the related algorithm are listed in Appendix 7.

6. EXAMPLES

The CCD scheme proposed here is a three-point seheme with sixth-order accuracy. Usu-
ally a three-point scheme (¢.g., central difference scheme) has only second-order accuracy.
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Two examples are used in this section 10 show the advantage of using this new three-
point schente. Comparison is made between the CCD scheme and the second-order central
difference (SCD) scheme on: (a) rruncation error. (b) horizontal resolution. and (¢) CPU
time:

6.1. One-Dimensional Convection-Diffusion Equation

Consider a one-dimensional convection—diffusion equation.

11 2
atxny —.-F}(.\}‘—E —(‘l_,l']‘—l{f =d(x), 0D=yx=<m, (6.1)
dx dx=
with the boundary conditions
=10, Y(a)y=0. {6.2)

If the coefficient functions in (6.1) are taken as
alxy=1. #o)=1. clvi=1, dix)y=cosxy+2siny, 0=y < 7, (6.3)
Eq. (6.1) has an analytical solution,
WM () = sin(x). 16.4)
We solved (6.1) numerically with both CCD and SCD schemes under various horizontal
resolutions. and we recorded the CPU time (a SUN Sparc-20 was used) for each run.
Comparing the numerical results with the analytic solution (6.4), we obtain the truncation

errors of the two schemes for the given resolution (represented by number of cells). We
define an averaged relative error (erry) by

E;.; |‘IJ1'-.I - ,q]_,:‘-l:l'lLA“_ ‘é‘.\'
Y, AvAy

L) f

(6.5)

ClTy =

Thus. we have a data set consisting of truncation error. CPU time, and cell number for the
two schemes.

The relationship between the cell number (N) and erry, (Fig. 2a) for the CCD scheme
(solid curve) and the SCD scheme (dashed curve) shows that for the same erry, the cell
number would be much smaller in the CCD scheme than in the SCD scheme. In other
words. we may use a much coarser resolution for the CCD scheme than for the SCD
scheme if the same accuracy is required, For example. the CCD scheme needs only 18
cells when err,y is around 0.38 % 1077, However. for the same accuracy. the SCD scheme
F?F(Iuircs 9400 cells (see Table 2).

The relationship between the CPU time and the averaged relative error (Fig. 2b) for the
CCID scheme (solid curve) and the SCD scheme (dashed curve) shows that for the same
erry, the CPU time is much shorter in the CCD scheme thanin the SCD scheme.

Such striking features can also be observed in Table 2. When the relative truncation errors
are on the order of 0.2 x 107%. the SCD scheme needs 3600 grid cells: however, the CCD
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FIG.2.  Companson between the CCD and SCD schemes 1n ene-dimensional convecnion—diffusion equation:
() ¢el numbsr versus average error (b CPL time vensas average ermorn Here sobd cunves denote the CCD scheme
amd the dashed curves represent the SCE seheme.

scheme requires oply 14 grid cells. The CPU time is also more than an order of magnitude
smallerusing the CCD scheme (0.28 x 1077 5) than using the SCD scheme (0.32 x 107 1s).
The ratio of CPU between using SCD and CCD schemes (Ra). called the CPU ratio here,
is around 24.2 when the truncation errors are on the order 0f 4.37 x 1077,

6.2. Stommel Ocean Model

Stommel [23] designed an ocean model to explain the westward intensification of wind-
driven ocean currents. Consider a rectangular ocean with the origin of a Cartesian coordi-
nate system at the southwest corner (Fig. 3). The v and v axes point eastward and north-
ward. respectively. The boundaries of the ocean are at x =0. A and vy =0, 5. The ocean is
cconsidered as a homogeneous and incompressible layer of constant depth D when at rest.
When currents occur as in the real ocean, the depth differs from D everywhere by a small
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TABLE 2

‘el
o0
]

Comparison between the CCD and SCD Schemes in One-Dimensional

Convection-Diffusion Equation

Error range Feutures cCh SCD R

0.36=0.83 % 10 Cell numbier 7 200
Average erfor 0.2649 « 107 08262 « 107* 123
CPU time (5] (Lo s 0001833

G27~0L35 < 10 Cell number it 1000
AveTage Lrror 0.2734 x JO° 0343 « 107 142
CPL fime (s) 0,002 (008833

023026 x 107 Cell number L4 3600
AveTige etror (L2395 w 1" 02577 w o 13
CPU time (s) 0.0)2833 G432

0.37~0.38 = 107 Cell numbger I8 G000
Avirage ertor 03747 % 10 037789 107 242
CPLU time (%) L3S 0.08453

perturbation. Due to the incompressibility. a streamfunction ¥ is defined by

EY i

av o ax

where « and v are the x-and v components of the velocity vector.
The surface wind stress is taken as —F cos(Ty/b). The component frictional forces are

takenas — R and — Rv. where R is the frictional coefficient. The Conolis parameter [ is
also introduced. In general it is a function of ». The latitudinal variation of £, 8 =df/dy,
is called the g-effect in the ocean dynamics. Under these conditions Stommel derived an
equation for the streamfunction /.

# @ Ay 3 )
— == W +— =—ysn| —v . (6.6
(-’J.r!' * E!_\‘J) T i ysim (b"_ 1000

o

F1G. 3. Ocean basin dimensions and the coordinate svstem.
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with the boundary conditions:

Wl y)=W(a v)=Wix.0)=W(x.h)=0. 16.71
Here. the two parameters o and y are defined by
g Fx
= —. V= —
R Rb
The analytical solution of (6.6) with the boundary conditions (6.7} is given by
HAC 3
Y=—yp (—?) sin (:{\) (pe™ 4 ge® —1), (6.8)
T b~

where

(6.9)
p= (]__{_Br.)f)‘(";\h_ggi)* qzl _p'
The physical parameters are selected as [23]

A=10m. b=27x10°m. D =200m,

F=03x107"m*s72, R=0.6x10"ms".
The parameter £ is taken as 0 for the case without the f-effect case. and it is wken as
107" m~"' 5! for the case with the B-effect case.
6.2.1. Compurarional Algorithm
Use a uniform grid, O=xj<xs< - <xy, <ty =i and D=y <y2 < .+ <

¥, < ¥y =5 with grid spacing Ax =X, — x5, =A/N, and Ay=y,.1 -y, =h/N,.

For simplicity and noloss of generality. we assume that the cell number in both the x and ¥
directions are the same. N, = Ny = N. The alternating direction implicit (ADI) method is
used for solving FDE., The iteration & to & - | can be separated into two parts: (a) iteration
along the x-axis to obtain “intermediate variables™ W | (§W/5x); .and (§°¥/8x7)] .

LAY ELA WL 3 oy R e
(_'5-"‘: );.,- e (H); - A.":mi"’_f\u - Ay* e j#1 T ¥ J_I) T:“‘} (F.‘E)i.r'-l-l
S Rwy 9 [yt swyt
s (s—) T ((o—) - (5—)) 010
()., &L )G -SEFL-GL)
—( [— + [ — + =] -——=| = ~ -
16y \ Ay iy 5"‘":—1.5 &x iy 16 X% /o A =1

Wi, — W0 =0 (6.11)

(&), -G ) (G, ()L,
sax\\ox /o, \a /L Te\\GeE L T

+ sy 3 [ 207 N =0 6.12)
— A3 P A L H )= R
i i ﬁ_\,:' ¥, § i.j =1, (o 4
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and (b) iteration along the y-axis to obtain variables at the next iteration & + 1. \P‘ i
(5w /6x)8 " and (82 f8x° 1“1.

» dest - P .
52w 6 . JW 3 1 /8w
— ) =y, e (=) - : : ===
(a_\-f )) AxT f T T (3.\' ) NSRS Rl (:Sx?- ),_.
! : 9 w) (s\p)' ) o
8 (5‘_ +3'3‘“\ (=1l B/ iz o
7 fawy ! LAY L ey (slw)‘“ (,sfw)“'
E .5-\" o=+l 8." =1 N (5‘. )e_; 16 ﬁ-"-: (L ‘E'I--"';2 1 =T

15 1 " -
T ®2ay (70 — ) =0 (6.14)
9 (W-*“ (w)"*‘ [ (‘5211:)*"’ (534))#“ \
— = — i A -4 n ‘J
SAY Ay Fitat By i 8 5v2 - 352 .
Pel .
X 3 = UL \IJT 1‘1_,JH[ l]!"”'l —U 6.15
N ( 8y2 ) Ay? (¥, + %) (6.15)

Such an iterative process stops when the correction at the iteration & + 1.

. [phel @t I Ar Ay
corrf'i“':z"" 1 i U1 = (6.16)
E___) R p |AxAy

is smaller than 107°,

The condition g = 0 leads 10 @ = 0'in (6.6). The analytical solution of (6.6) becomes

b 2 fx i__‘,—E}, - ,%;__] L
W=y =] sin[—x)(1-= ¥ =zl (6.17)
a, b v pEh — pT ech —p S

which is depicied in Fig. 4.

We solved (6.6) numerically with both CCD and SCD schemes under various horizomtal
resolutions. and we recorded the CPU time (a SUN Sparc-20 was used) for each run.
Comparing the numerical results with the analytic solution (6.17). we obtain the truncation
errors of the two schemes for various resolutions (represented by the numiber of cells).

The relationship hetween N and erry (Fig. 5a) for the CCD scheme (solid curve) and
the SCD scheme (dashed curve) shows that tor the same err,, the cell number (N ) would
be much smaller for the CCD scheme than for the SCD scheme. This is to say that w¢ may
use a much coarser resolution for the CCD scheme than for the SCD scheme for the same
accuracy. The relatonship between the CPU rime and the averaged relative error (Fig. 5b)
for the CCD scheme (solid curve) and the SCD scheme (dashed curve) shows that for the
same erry, the CPU time is much shorter in the CCD scheme than in the SCD scheme.

Table 3 lists err,. cell number, CPU time Tor the two schemes, and CPU ratio (Ra).
When the relative truncation errors are on the order of 0.68 x 107" the SCD scheme nieeds
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TABLE 3

Comparison between the CCD and SCD Schemes in Stommel Ocean Model (beta = )

Error range Features ¢Cn SCDh Ra

(.86~09 = 1 Cell number 9w 30 0x 50
Avetage error 866« 10 (8ua x 10F 27.0
CPL time (x) 310 R38R

0.76~0.77 » 10 * Cell number 10 10 100 = 100
Average error 0.766 = 107 0761 = 10" 3713
CPL time (5) 4.6 L2540

.68--0.69 x 10 Cell mumber 1313 130 % 150
AvCTRge citor 0,688 =< [0~ 0,68 < 10 3568
CPU e (%) 162 3780

22500 grid cells: however, the CCD scheme requires only 196 grid cells. The CPU ratio
between using SCD and CCD schemes (Ra) is 356.8,

6.2.3. Case 2; With the B-Effect

For this case. #=10"" m~'s~ ! is used. The analyvtical streamfunction, ¥™, is plotted

in Fig. 6. We solved (6.6) numerically with both €CD and SCD schemes under various
horizomal resolutions, and we recorded the CPU time (a SUN Spare-20 was used) for
cach run. Comparing the numerical results with the analytic solution (6.8). we obtain the
truncation errors of the two schemes for various given resolutions (represented by the
number of cells).

The relationship between N and erry, (Fig. 7a) for the CCD scheme (solid curve) and the
SCD scheme (dashed curve) shows that for the same err,, the cell number (V) would be

y (m)

FIG. 6, Sireamfunction (m

x{m)

fx) abtained from Stommel ocean model with betae= 10" m s
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much smaller in the CCD scheme than in the SCD scheme. The relationship between the
CPU time and the averaged relative error (Fig. 7b) for the CCD scheme (solid curve) and
the SCD scheme (dashed curve) shows that for the same erry, the CPU time is much shorter
in the CCD scheme than in the SCI) scheme.

Table 4 lists err,,.. cell number, CPU tume, and R« for the two schemes. When the relative
truncation errors are on the order of 0.73 x 1077, the SCD scheme needs 22,500 grid cells:
however. the €CD scheme requires only 729 grid cells. The CPU ratio between using SCD
and CCD schemes (Ra) is 254.87.

7. CONCLUSIONS

(1) From this study, it can be stated that the three-point sixth-ordér CCD scheme is a
promising highly accurate method for both derivative computation and FDE soelutions. The
advantage of this scheme is the existence of a global sixth-order polynomial which not only
satisfies the FDE at all the grid nodes including boundary points but.also the bountlary
vonditions.
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TABLE 4
Comparison between the CCD and SCD Schemes in Stommel
Ocean Model (beta = 107" m 's 1)

Error runse Fealures CCD SCD Ra

020024 = |0 Cell number 4% 13 50 = S
Average eror 0,236 % 107 0204 5 |0 1.8
CPL time () 512 16,1

0.22-0.24 % 10" Cell number 19 < 19 150 % 150
Averuge error 0.238= 10 7 0225 =10 7874
CPE time (s) 4.9 1174

073074 % o Cell sumber 27 %27 250 x 250
Averipe error 073 = 107 0,735 » 10F* 25487
CPL time 15) EERY 5640

2) Fourier analysis shows that the CCD scheme has the least error among other same
order schemes, including the normal compact scheme. Also. the CCD scheme has the
smallest truncation error among various sixth-order schemes. The truncation error of the
first derivative using the CCD scheme is about 41.2 times smaller than using the sixth-order
central scheme, 4.6 times smaller than using the sixth-order tridiagonal (compact) scheme,
and 6.0 times smaller than using the sixth-order pentadiagonal (compact) scheme. The
truncationerror of the second derivative using the CCD scheme is about 36 fimes smaller than
using the sixth-order central scheme. 8.4 times smaller than using the sixth-order tridiagonal
scheme (compact). and 13.8 times smaller than using the sixth-order pentadiagonal scheme
(compact). Comparing the CCD scheme with the second-order central difference (SCD)
scheme (most commonly used in ocean models), the truncation errors for both first and
second derivatives are more than four orders of magnitude smaller.

(3) For periodic boundaries, the CCD scheme has sixth-order accuracy arall grid points
including boundary nodes. For nonperiodic boundaries. the CCD scheme has sixth-order
accuracy atall imerior grid points. fourth-order accuracy in the derivative computation, and
fifth-order accuracy inthe FDE solutions at the boundary nodes.

(4} Both twin-tridiagonal and triple-tridiagonal techniques are proposed for the CCD
scheme for calculating derivatives and solving FDEs,

(5) Twoexamples (the convection-diffusion model and the Stommel ocean model) show
striking results (grear reduction in truncation error and CPU time). which may lead to a
wide application of the CCD scheme in computational geophysics.

(6) Future studies include applying the CCD scheme to nonuniform and/or staggered
erid systems. as well as designing even higher order schemes such as an eighth-order CCD
scheme,

APPENDICES
Appendix 1: Global Hermitian Polynomial

The first-order and second-order CCD ditferences are obtained implicitly and globally
by the two jomt equations (2.7) and (2.8). A wwin-tridiagonal technique was developed 1o
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compute [ and /7 at all grid points. As soon as the global first and second differences
dre obtained. the higher order (K =3. 4.5, 6) dilferences can easily be calculated locally
with (2.5).

Since the CCD scheme is solved globally. the neighboring local Hermitian polynomials
should satisfy

. . 5f
H(x) = H_(x)=H_ ()= (—’f)
S [

o

o =1 5 & f
H" {l’,} = H:_lf“';’.’l:.H‘TH,"J:‘: (ﬁ\’:) .

by

A global polynemial #,(x) can be défined by

H,(x) = Halx). a=x) <X < X3,
Hx) = i)+ (0 —wdH @), 5 sy < (=23 ....0—1)
H,(x) = H,lx); Xy X < X =Mh

where w, (1=2.3.....n1— 1) are the local weighting factors. Notice that no matter what
value of e; is. the global polynomial H, (x) always has continuous first- and second-order
derivatives at the point x,.

H;_(.t‘.} =H (v, —0)= H_;(.\'; -+ 0)

HIx) = H(x, —O)=H(x, + 0).

The weighting factors are recommended o be ) < e, < 1. If only the first-order and second-
order derivatives are compuled. we may use e; = 1/2 for simplicity. It is also possible 10
optimize w; by minimizing the discontinuity propertics of the high-order (& = 3) derniva-
tives at the node points. As soon as the global polynomial H,(x) is established. we can
calculate all the derivatives and integrate. Since the values of ¢, do not affect the first-
order and second-order derivatives. we will not discuss here the effect of w;. This pa-
per focuses only on the first-order and second-order differentiation of the second-order
PDE.

Furthermore, a higher order (higher than sixth-order} three points CCD scheme can also
be defined. See Appendix 2 for description.

Appendix 2: Eighth-Order CCD Scheme

The eighth-order CCD scheme relates fi. £/, £/ £ 1o the two neighboring points:
. ap ”» o130 " " o () cf g w13
fiorve £y £ £7 and fiog f7 £, £y and solves for f'. . /7. A local
Hermitian polynomial H;(x) is defined onthe closed inwerval 2, ., 4,40 ] by

Hf”'l,‘-]} L .H"Frl.l';) 3 H..F-H[.r-".) o Hrm.:lr‘t*} -5
5 S 3 RS a0 X+ 31 X

Hx) = Hix)=H (x)x +

)6, HM), . HY )
6 7 g

16,
L "(x;) 0
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with

Hitsa)) = ficty Bied= S Hla V=S fiwts B G-V =8 B0 =5

H' i) = [ H e = 1 H 0 = 151 ey = £,

The nine parameters are determined by

H:[’-“;) - f}
. v ]9 ] . i }" ” " 3 i
Hl(x)) = m(fq L-x}—E{LHTJ{,_;}—FEU}H—f,-_;)‘——(f(’ +fE
Wy 4 i 5 1 "
H. v, = _3()‘-: ?f+f I}_ (Jr_. _.ﬁ_l.]+ﬁ(ﬁ4;+_{-_1]
u:" £2)
HY) = = (f V= ficy) s 195 — (L )— (f )
’ 16}‘ AT ek et SR
(flf:i lh}
el 39 2 ot
H} — ;4(.{—-—! f ||"|'v {fv._’f— d_hi{.fi--l-’-)fs—l}
3 ~{3) (3t
J'"E(;.-l_fé-l
is) 315
H 7 (x) = ”;U"xﬂ fi)— (f 1+f"|’+ {f_ f_
13 m
W{f
(0 l)"- 495 Pl Wy
IFii () = ‘f‘H__’}f"-{-fi ” i+ fl 1]+ it (I(+t+fl-—l‘
45 £l o
—F(f.f;i—ff_“il
25 1575
(& r’
H’ '(.l’;‘! = Y ff;-rl fia)zd —— 26 {f‘_,_l‘rf‘ |) (f_._| , |)
]05 1Al kY
_2Ilf.,(fx—ji+ f——l)
. vmm 13860 2?
HP ) = =——(fie1 =204 froi) F = TR ey = fia)= =i # 1L

4~0(f1'*1 . 1‘})'
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The &th derivative at the grid point x; is approximated by

Y0 = H’ﬁ'(-x,}_ k=1.2..... 8.

Therefore, the first-order derivative at grid point v; is computed by

lg o " ar h I | {3

?.,’U:‘-l Fhio)+ - g'fn'ul ;—|}+ [f(j[ T f‘|}
51 427 it
=tz Tl F

the second-order derivative at grid point 1, is computed by

.1( it 13 A3

]Gk(f:—l r—l}_ ':J{ro-l —I.}_J_fz = 8(-; J{r.—l)
! 1 Hmﬁs
=4— =1 T =47 :—I}+ =
h:.U o =2fi+ | 15 i 0

and the third-order derivative at grid point x; is computed by

105 , 15 ., "oy ) . SRy, 13
ETYE e AR AT hl)‘x*-'l_‘»fr i U.tu o+ 1
165 | 1357 .« -,'h '
== 1 I‘| Jfl- g ff” PR
8 2k 16212-- 6!

Appendix 3: Nonperiodic CCD Calculation
Twin-forward elimination/backward substitution scheme is designed to solve global CCD
system (4.5) with boundary conditions (4.6). The 2(N £ 1} = 2{N L |) coefficient matrix of
(4.5) has a twin-tridiagonal structure and can be directly solved by two steps: twin-forward

elimination and twin-backward substitution.

AL Twin-Forward Elimingtion

The twin-forward technique is used to transtform the twin-tridiagonal coefficient matrix
into a twin-diagonal coefficient matrix by eliminating the four parameters. @/ (1). b, (1).
a7 (1). b7 (1) at each grid point (Fig. 8). At the left boundary (i = 1), these four parameters

are already absent.
If the four parameters at grid node 1 are eliminated. it is easy 10 use (4.5) to eliminate

al (a1 k! (1o k? (1) atgrid point i + 1. This process continues until reaching
the right boundary. The coefficient matrix of the global CCD system becomes twin-diagonal.
Figure Y shows the structure of the coefficient matrix after twin-forward elimination, where

the shadowed arca shows the eliminated elements.

A 3.2 Twin-Backward Substinition

The twin-backward substitution technigue is used to obtain both (4 //8x); and (8% f/§x°)
from known (8f/5.),,, and (37 F/5x°). .. After the twin-diagonal coefficient matrix has
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been established, the global CCD system (4.5) hecomes two equations with two unknowns
at the night boundary (xy ..

TR , #f ) :
a{.___1(2')(_—'r—) —-—b;_,_,(?}( _‘;) =5y J=L2
OX J wyy 8x% f nuy

Solving this set of two algebraic cquations. we obtain (87 /8x )4,y and (8 I8 n ey,
The substitution procedure starts from the second right point {xy). The first-and second-
order differences (3f/6x); and (8° f/6x7), are computed from substitution (i =N,

N—=1, ....1¥%
) . j=12
i+1

(¥

e B f § 8 f
al {2-]'( i FhHU) | - { ) =3/ —a!(3) of =h{(3)( = 2
‘ A ), s J Sx J dx

Appendix 4: Periodic CCD Calculation

(¥}

The structure of the periadic CCD matrix is shown in Fig. ). Similar 1o nonperiodic
boundaries. we coenstruet another form of twin-ferward elimination and twin-backward
substitution procedures for periodic boundaries. Figure 11 shows the structure after the twin-
forward elimination procedure. where the shadowed areas mean the eliminated elements.

Appendix 3: Fifth-Order Accurate Nonperiodic Boundary Conditions

Consider the left boundary with uniform gnd Ax = /. Let v, be the left boundary node:
let xy and x; be the first and second neighbering nodes. Expanding the dependent variable
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FIG. 10, Structure the CCD coefficient matnx Tor pertodic boundanes.
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FIG. 11 The twin-forward elimimation of the CCD coefficient matrix for periodic boundries, Here B denotes
climinated coefticients,

J and its derivatives into Taylor series at v, we have

[+
. {_!} LI ' =
flx) = flas)+ ZTI"!{X:)}:‘-;--OU:W
| !

o

: I p i
flxs) = fixa) + E pf“‘{x;)h"-i--om')

=

§ '
+ ot . _! T s
Fla) = filxa)+ Z {—'FLf‘l"'(.\':}hl + O(°)
L=1 :
= (=)}
Pl = i+ Y 7 FAED (xnhE + Oy
i=1 .

which lead to

M) + 16 f70x2) + 277 (vidk = 47" (x2)h + %{311’{3'[1— 32f{x)+ flx))
!

5L

h :
S )+ O,

Therefore, the nonperiodic boundary cendition

af §f 3 3 f 1
l (5,\')1 ' (5-"): T (_'5-'-':)| I (:‘3‘1':)3 * h( h fr+ f)=0

‘has fifth-order accuracy.
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Appendix 6: Nonperiodic CCD FDE Solution

The iriple-forward elimination/backward substitution scheme 1s designed to solve global
CCD FDE system (5.9) with boundary conditions (3.10), The 3(N + 1) x 3(N + 1) coef-
ficient matrix of (5.9) has a tnple-tnidiagonal structure and can be directly solved by two
steps: riple-forward elimination and triple-backward substitution.

A.6.L. Triple-Forward Eliminaiion

The triple-forward technique is used to transform the triple-ridiagonal coefficient matrix
into a triple-diagonal coefficient matrix by eliminating the six parameters, @' (1), a>(1),
b1y b7 (1), ¢l (1), ¢2(1) areach grid point (Fig. 12). Atthe left boundary (i = 1). these six
parameters are already absent.

If the six parameters at grid node ¢ are eliminated, it is casy 1o use (5.9) to eliminate
al ()ear, (bl (1. B2, (1), ¢) (1), (1) at grid point i + 1. This process continues
until reaching the right boundary. The coefficient matrix of the global CCD FDE systemn
becomes triple-diagonal. Figure 13 shows the structure of the coefficient marrix after triple-
forward elimination. where the shadowed area shows the eliminated clemenis,

A.6.2, Triple-Backward Substitution

The triple-backward substitution technigue is used w obtain £, (3f/8x);. and (6% f/8x%);
fromknown [y (8F/8x), 21 and (87 1/8x7); 1. After the triple-diagonal coefficient matrix
has been established. the global CCD system (5.9) becomes three equations with three

. " .
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FIG. 12, Siructure of the CCD coeflicient marmx for FDE with nonperiodic boundanes.
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FIG. 13, The miple-forward chmnaten of the CCD covflicient matrix for FDE with nonpenodic houndanes.
Here B denotes eliminated coefticients.

unknowns at the right boundary (v ),

ar‘)
Nl

a{,__ltij(;ﬁ 4ph

+ ok D fvrr =5 =123

Solving this setof three algebraic equations, we obtain fy .. (8f /6x)x -y and tﬁz_{x&r:] il

The substitution procedure starts from the second right point(xy ). The dependent variable
and its first- and second-order differences at any grid point ix;) are computed tfrom the
following substitution (¢ =N, N — |

i . é ) i 5: : §
a () (—’i) +h/(2) (J) +e () f;
8% B {S_I‘ :

=5/ —al(3) (—’) —B3) (—f) — (3 fiuy. j=1.2.3,
LY i+l Tis i<~

Appendix 7: Periodic CCD FDE Solution

The structure of the periodic CCD PDE matrix is shown in Fig. 14, We can use a similar
triple-forward elimination and triple-backward substitution procedures. Figure 13 shows the
structure after the triple-forward elimination procedure, where the shadowed areas mean
the eliminated elements.
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FIG. 14, Structure of the CCD cocfivient matria for FDE with periodic boundary.
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FIG. 15, The triple-forward eliminagion of the CCD coetlicient marnix for FRE with periodic boundaries,
Here B denotes climinited cocfficients.
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